Maszyna do badania wytrzymałości opakowań na ściskanie. w zakresi do 10 lub 50 kN. Maszyna tego typu jest specjalnie zaprojektowana do prowadzenia prób ściskania opakowań. Typowe próbki: pudła opakowaniowe Nowe cechy: - Solidne kolumny prowadzące zwiększają sztywność boczną i zapewniają liniowy Metoda badania modułu Younga jest również wykorzystywana do określenia zachowania próbki pod osiowym obciążeniem rozciągającym. Typowe wyniki testów wytrzymałości na rozciąganie obejmują granicę sprężystości, wytrzymałość na rozciąganie, granicę plastyczności, granicę plastyczności, wydłużenie i moduł Younga. Badanie wytrzymałości betonu wykonujemy na budowie, in situ, metodą nieniszczącą sklerometryczną oraz metodę próbek walcowych w labolatorium. Do badania wytrzymałości betonu można wykorzystać kilka metod. Oto niektóre z nich: badanie wytrzymałości betonu na ściskanie metodą sklerometryczną - badanie młotkiem Schmidta Metoda Ve-Be. Metoda jest przeznaczona do badania mieszanek o konsystencji wilgotnej. Zaczynamy od umieszczenia warstw mieszanki betonowej w leju wsypowym formy (o kształcie ściętego stożka). Każdą z 3 warstw zagęszczamy przy użyciu 25 uderzeń pręta do sztychowania. Warto dodać, że mieszanka musi wypełniać całą formę. Badanie wytrzymałości na ściskanie. L p Data Wymiary próbki Masa próbki. gęstoś ć betonu. Siła niszcząc a. Naprężenia Wytrzymałoś ć. powierzchni a. wysokoś ć. objętoś ć # Współ. Kształt. null. mm^2 mm cm^3 g. g/cm^ 2 N. N/mm^ 2. N/mm^ 2 N/mm^ 1. 25 s 10000 100 1000. 2357, 3 3,05 431700 43,17 0,9 38,853 38, 2. 25 s 10000 Vay Tiền Online Chuyển Khoản Ngay. 3 August 2021 Bezpieczeństwo Badanie wytrzymałości betonu ma na celu określenie, czy parametry danej mieszanki zostały właściwie dopasowane do warunków panujących w miejscu jej zastosowania. Kontrola może dotyczyć między innymi stopnia odporności na ściskanie, rozciąganie lub mróz. W jakich sytuacjach wykonywane jest badanie wytrzymałości betonu? Jak w wypadku pozostałych wyrobów budowlanych, tak i w stosunku do betonu stosowane są procedury potwierdzające zgodność uzyskanych przez produkt parametrów technicznych w odniesieniu do określonych wymogów. W związku z tym, że produkcja betonu i kształtowanie się jego właściwości są procesem długotrwałym, kontrole zgodności produktu z normami mogą być przeprowadzane w różnych punktach czasowych, na przykład: w trakcie produkcji, w trakcie dostawy, po wbudowaniu. Kontrola ta może być przy tym przeprowadzona przez szereg różnych biorących udział w produkcji i obrocie towarem podmiotów: producenta, wykonawcę robót budowlanych, nadzorcę budowlanego, inwestora. Obowiązkowa kontrola zgodności betonu wykonywana jest przez producenta i ma na celu ustalenie zgodności produktu z kryteriami wynikającymi z normy PN-EN 206. W tym typie kontroli wyróżnia się następujące parametry: wytrzymałość betonu na ściskanie, wytrzymałość betonu na rozciąganie, właściwości inne niż wytrzymałość. Ewentualne dalsze kontrole są opcjonalne i wynikają głównie z braku zaufania odbiorców produktu do producenta i jego zapewnień. Mogą być również dyktowane zapisami specyfikacji projektowej oraz wątpliwościami dotyczącymi jakości betonu. Metody wykorzystywane do badania wytrzymałości betonu Do badania wytrzymałości betonu wykorzystywane są zróżnicowane metody dostosowane do typu testowanej wytrzymałości. Badanie wytrzymałości betonu na ściskanie Wytrzymałość na ściskanie to podstawowy parametr techniczny betonu, który określa nośność konstrukcji z niego wykonanych. Badanie wytrzymałości betonu na ściskanie przeprowadza się na próbkach pobranych w trakcie betonowania. Jego wyniki określają wytrzymałość tworzywa wbudowanego, która zależy nie tylko od jakości betonowej mieszanki, lecz także od technologii wbudowania. Do badania betonu wykorzystuje się dwie metody – prasę wytrzymałościową oraz młotek Schmidta. Prasa wytrzymałościowa Jest to metoda określana jako niszcząca. Próbki pobiera się ze zrobu, a ich wytrzymałość na ściskanie określa po 28 dniach niezbędnych do ustabilizowania materiału. Specjalna prasa napiera na próbkę, miażdżąc ją. Wytrzymałość betonu określa się na podstawie odczytu wartości siły potrzebnej do zniszczenia próbki. Młotek Schmidta Metoda ta stanowi metodę nieniszczącą, zwaną także nieinwazyjną – w trakcie badania próbka nie ulega zniszczeniu. Pomiar wykonywany jest przy pomocy młotka ręcznie, w oparciu o analizę zmiany energii bijaka sprężynowego po odbiciu od badanej powierzchni. Badanie wytrzymałości betonu na rozciąganie Badanie rozciągliwości przeprowadzane jest wtedy, gdy beton ma zostać wykorzystany w produkcji nawierzchni drogowej, gdzie będzie narażony na silne naprężenia rozciągające mogące wywoływać uszkodzenia. W celu przeprowadzenia badania wytrzymałości betonu na rozciąganie stosuje się przede wszystkim rozciąganie przy rozłupywaniu, gdzie mierzy się siłę rozłupującą, a następnie mnoży tę wartość przez współczynnik 0,9. Uzyskany wynik oznacza siłę rozciągającą. Badanie odporności betonu na wodę Badanie to ma na celu określenie poziomu wodoodporności betonu. W jego trakcie próbka substancji poddawana jest okresowemu działaniu wody nakierowanej pod ciśnieniem na jedną ze ścianek próbki. Obserwacji zostaje poddane to, czy woda przedostaje się na pozostałe ścianki, a także to, jak głęboko woda przeniknęła do wnętrza całej próbki. Badanie odporności betonu na mróz Beton stanowi tworzywo porowate, które pochłania wodę. W obniżonych temperaturach znajdująca się wewnątrz betonu woda zamarza, powiększając swoją objętość i powodując uszkodzenia struktury tworzywa. W celu ustalenia poziomu odporności danej mieszanki na mróz, wykonuje się badanie betonu polegające na określeniu masy złuszczonego materiału górnej powierzchni próbki na skutek zamrażania i odmrażania przy użyciu trzyprocentowego roztworu chlorku sodu. Wyniki kataloguje się po 28 i 56 cyklach, a samo badanie przeprowadza po 28 dniach dojrzewania betonu w warunkach uśrednionych. Osobne badania betonu przeprowadza się również w celu określenia wytrzymałości tworzywa przy obecności środków odladzających, można również zbadać beton pod kątem jego nasiąkliwości, choć badanie to nie jest przewidywane w obowiązujących normach zharmonizowanych. 1 Badanie wytrzymałości betonu na ściskanie Prasa do badania materiałów budowlanych do prób statycznych ściskania; typu: P-250 nr ewidencyjny PH01 oraz P-50 nr ewidencyjny PH02. Waga laboratoryjna elektroniczna nr ewidencyjny WG01. Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 2 Badanie nasiąkliwości betonu Suszarka laboratoryjna nr ewidencyjny SL01. Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 3 Badanie odporności betonu na działanie mrozu Komora do badan mrozoodporności ToRoPoL, typu K-010, nr fab. 110504 Prasa do badania materiałów budowlanych do prób statycznych ściskania; znak fab. P-250 nr ewidencyjny PH01. Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 4 Badanie odporności betonu na zamrażanie/odmrażanie z udziałem soli odladzających Komora do zamrażania/odmrażania z udziałem soli odladzających GRONLAND, nr ewidencyjny Z/O01 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 5 Badanie przepuszczalności wody przez betonBadanie głębokości penetracji wody pod ciśnieniem. Urządzenie do badania stopnia wodoszczelności betonu prod. ITB 2x3 stanowiskowe nr ewidencyjny W01 Agregat sprężarkowy nr ewidencyjny Agr01 Przyrząd do rozłupywania próbek. Miara stalowa zwijana zakres pomiarowy3000 mm 6 Badanie wytrzymałości betonu na zginanie Maszyna wytrzymałościowa do prób statycznych dwustanowiskowa, nr fab. LT 01/2007 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 7 Oznaczenie rzeczywistej wartości stosunku w/c przez wygotowanie mieszanki Metalowy cylinder Palnik gazowy z podstawą Waga laboratoryjna elektroniczna nr ewidencyjny WG01 8 Badanie wytrzymałości betonu na rozciąganie przy rozłupywaniu Maszyna wytrzymałościowa do prób statycznych dwustanowiskowa, nr fab. LT 01/2007 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 9 Badanie temperatury masy betonowej Termometr elektroniczny typu DT 34 Nr fab. 711206 10 Badanie zawartości powietrza w mieszance betonowej metodą ciśnieniową Przyrząd pomiarowy do badań zawartości powietrza TESTING, Nr ewidencyjny P01 11 Badanie konsystencji mieszanki betonowej metodą Vebe Przyrząd pomiarowy Vebe Nr ewidencyjny V01 Zegar elektroniczny 12 Badanie konsystencji mieszanki betonowe metodą opadu stożka Forma kształtująca próbkę Pręt sztychujący Miara stalowa zwijana zakres pomiarowy 3000 mm 13 Badanie konsystencji mieszanki betonowej metodą stolika rozpływowego Stolik rozpływowy wraz z formą kształtującą próbkę Miara stalowa zwijana zakres pomiarowy 3000 mm 14 Badanie ścieralności betonu za pomocą szerokiej tarczy ściernej Szeroka tarcza ścierna ToRoPoL, nr fab. 110504 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 15 Badanie wytrzymałości kostki brukowej na rozciąganie przy rozłupywaniu Maszyna wytrzymałościowa do prób statycznych dwustanowiskowa, nr fab. LT 01/2007 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 16 Badanie wytrzymałości krawężników na rozciąganie przy zginaniu Maszyna wytrzymałościowa do prób statycznych dwustanowiskowa, nr fab. LT 01/2007 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 17 Badanie wytrzymałości płyt chodnikowych na rozciąganie przy zginaniu Maszyna wytrzymałościowa do prób statycznych dwustanowiskowa, nr fab. LT 01/2007 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 18 Badanie wytrzymałości obrzeży betonowych na rozciąganie przy zginaniu Maszyna wytrzymałościowa do prób statycznych dwustanowiskowa, nr fab. LT 01/2007 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 19 Badanie wytrzymałości na ściskanie bloczka betonowego Prasa do badania materiałów budowlanych do prób statycznych ściskania; znak fab. P-250 nr fab. PH01 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 20 Badanie wytrzymałości płyt ażurowych na zginanie Maszyna wytrzymałościowa do prób statycznych dwustanowiskowa, nr fab. LT 01/2007 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 21 Badanie nasiąkliwości elementów prefabrykowanych drobno wymiarowych Suszarka laboratoryjna nr ewidencyjny SL01 Waga laboratoryjna elektroniczna nr ewidencyjny WG01 Suwmiarka jednostronna elektroniczna zakres 0 ÷ 600 mm. 22 Projektowanie betonów zwykłych, konstrukcyjnych, specjalnych z uwzględnieniem klas ekspozycji 23 Badanie wytrzymałości betonu na zrywanie Pull-Of Urządzenie technologiczne do prób statycznych zrywania Pull-of Tester typu W16-ez nr fab. 027/2007 24 Odwierty rdzeniowe – Wycinanie, ocena i badanie wytrzymałości na ściskanie Wiertnica ze statywem Typu CX20 CE3P Nr ewidencyjny WS01 25 Kruszywa-oznaczenie składu ziarnowego Komplet sit Wstrząsarka do sit 26 Kruszywa-badanie wilgotności Suszarka laboratoryjna nr ewidencyjny SL02 Waga laboratoryjna elektroniczna nr ewidencyjny WG02 27 Kruszywa-oznaczenie zawartości pyłów mineralnych Suszarka laboratoryjna nr ewidencyjny SL02 Waga laboratoryjna elektroniczna nr ewidencyjny WG02 Urządzenie do badania oznaczenia 28 Kruszywa-oznaczenie zawartości zanieczyszczeń organicznych Szklany cylinder pomiarowy (1000dcm3) 29 Cement-oznaczenie wytrzymałości Mieszarka do zapraw normowych Prasa do badania materiałów budowlanych do prób statycznych ściskania; znak fab. P-50 z wkładką, nr ewidencyjny PH02 Forma do bloczków normowych 30 Cement-oznaczenie czasów wiązania i stałości objętości Mieszarka do zapraw normowych Wanna z wodą Pierścienie Le Chateliera Aparat Vicata Czasomierz Prasy laboratoryjne są wymagane do różnych zastosowań laboratoryjnych takich jak opracowywanie i testowanie nowych materiałów oraz do kontroli jakości podczas produkcji. Do produkcji i rozwoju GRP (tworzyw sztucznych wzmacnianych włóknem szklanym), CFRP (tworzyw sztucznych wzmacnianych włóknem węglowym) lub innych materiałów kompozytowych, takich jak pianki wzmacniające. Te wysoko precyzyjne prasy laboratoryjne znajdują również zastosowanie w przemyśle drzewnym, tworzyw sztucznych, ogumienia i wielu innych dziedzinach przemysłu. Maszyny badają obciążenie hydrauliczne, przeprowadzają elektroniczny pomiar siły. Cyfrowy wyświetlacz ma funkcje wyświetlania obciążenia i utrzymuje maksymalną wartość obciążenia, zabezpiecza przed przeciążeniem i pokazuje dane o braku zasilania itp. Zgniatanie jest wykonywane w wersji manualnego i elektrycznego ustawiania wstępnego docisku. Nasze prasy pozwalają na użycie siły od 0,01 kN do 3000 kN. Nasze maszyny mogą być produkowane jako prasy o skokowym lub górnym skoku. Rejestracja danych procesowych jest realizowana na każdej prasie laboratoryjnej przez komputer. Odnośniki do prezentowanych badań: Badanie wytrzymałości betonu na ściskanie Badanie przyczepności - pomiar wytrzymałości betonu i warstw wykończeniowych na odrywanie / rozciąganie Badanie przyczepności przez odrywanie metodą pull-off Badanie wodoszczelności betonu i powłok pomiar wodoszczelności w warunkach laboratoryjnych na próbkach pobranych w trakcie betonowania lub wyciętych z konstrukcji badanie przepuszczalności wody przez beton wg PN-88/B-06250 badanie głębokości penetracji wody pod ciśnieniem wg PN-EN 12390-8 nieniszczący pomiar wodoszczelności w warunkach polowych metodą GWT Badanie stali zbrojeniowej i konstrukcyjnej Badania konstrukcji betonowych, żelbetowych oraz sprężonych (struno i kablobetonowych) Badania materiałowe stwardniałego betonu - do podstawowych parametrów betonu odpowiedzialnych za nośność i trwałość wykonanej z niego konstrukcji należy zaliczyć wytrzymałość na ściskanie oraz szczelność warstwy przypowierzchniowej. Klasa betonu (B) - odpowiada wytrzymałości gwarantowanej RbG betonu określanej na podstawie wyników wytrzymałości betonu na ściskanie zgodnie z normą PN-88/B-06250 Beton zwykły. Obecnie norma ta została zastąpiona normą PN-EN 206 Beton Część 1: Wymagania, właściwości, produkcja i zgodność, która wprowadza pojęcie klasy wytrzymałości na ściskanie (C). Klasa wytrzymałości na ściskanie (C) odpowiada wytrzymałości charakterystycznej fck,cyl / fck,cube betonu określonej zgodnie z PN-EN 206 i na co warto zwrócić uwagę, nie jest tożsama wytrzymałości gwarantowanej, gdyż wyznacza się ją na podstawie innych wzorów i procedur. Klasę wytrzymałości na ściskanie określa się na podstawie wytrzymałości charakterystycznej na ściskanie w 28 dniu dojrzewania na próbkach walcowych o średnicy 150 mm i wysokości 300 mm (fck,cyl) lub na próbkach sześciennych (tzw. "kostkach") o boku 150 mm (fck,cube). Alternatywnie można dokonać oceny klasy wytrzymałości betonu na próbkach rdzeniowych wyciętych z istniejącej konstrukcji - zalecane jest badanie próbek o średnicy i wysokości równej 100 mm. Badanie na próbkach wyciętych z konstrukcji wykonuje się również jako tzw. badanie reklamacyjne, w sytuacji gdy kwestionowana jest jakość i wytrzymałość betonu uzyskana na próbkach sześciennych pobranych w trakcie betonowania. Badania nieniszczące NDT nie dokonują bezpośredniego pomiaru wytrzymałości betonu na ściskanie, natomiast umożliwiają ustalenie wielu istotnych parametrów przypowierzchniowej warstwy betonu, skorelowanych z tą wytrzymałością. Z powyższego względu zaleca się weryfikację wyników badań nieniszczących na próbkach rdzeniowych wyciętych z konstrukcji. Jednorodność betonu ocenia się zwykle na podstawie analizy rozkładu wartości parametrów związanych z wytrzymałością betonu na ściskanie, na badanej powierzchni elementu konstrukcyjnego. Jednorodność betonu (rozkład jego parametrów wytrzymałościowych w konstrukcji) można określić na podstawie większej ilości próbek wyciętych z konstrukcji, a następnie ściśniętych w maszynie wytrzymałościowej. Popularną metodą oceny jednorodności betonu jest analiza wyników z pomiarów sklerometrycznych (pomiaru twardości przypowierzchniowej betonu). W podobny sposób można do oceny jednorodności betonu wykorzystać wyniki z pomiarów metodą pull-out i z metody ultradźwiękowej. Badanie wytrzymałości betonu na ściskanie na próbkach rdzeniowych Przewierty / odwierty - określenie wytrzymałości betonu na ściskanie na podstawie próbek rdzeniowych wyciętych z istniejącej konstrukcji. Pobieranie próbki rdzeniowej przy pomocy wiertnicy, do badań wytrzymałości betonu na ściskanie w prasie hydraulicznej Pobieranie odwiertów rdzeniowych (wiercenie rdzeniowe techniką diamentową) - przy użyciu wiertnicy diamentowej (wiertnicy z koronką diamentową) wycina się z konstrukcji odwierty rdzeniowe o średnicy z zakresu 50-250 mm (norma PN-EN 13791 zaleca aby średnica wyciętego rdzenia była równa Ø100 mm). Odwierty rdzeniowe do badań wytrzymałościowych pobiera się zwykle wiertnicą zamontowaną do konstrukcji na sztywno za pośrednictwem statywu, koronki w trakcie wiercenia są chłodzone wodą (alternatywnie możliwe jest zastosowanie koronek rdzeniowych do wiercenia na sucho), natomiast zastosowanie specjalnych przedłużek umożliwia wycinanie rdzeni o długości dochodzącej nawet do kilku metrów. Miejsce wyznaczone do wiercenia powinno być przed badaniem sprawdzone z użyciem detektora zbrojenia / lokalizatora instalacji celem uniknięcia uszkodzenia np. kabli instalacji elektrycznej lub przecięcia prętów zbrojeniowych. Przygotowanie odwiertów do badań - z pobranych z konstrukcji odwiertów - poprzez cięcie i szlifowanie - przygotowuje się próbki rdzeniowe (PN-EN 13791 zaleca aby średnica próbki była równa jej wysokości ∅ / h = 1:1). Badanie wytrzymałości na ściskanie - odpowiednio przygotowane próbki ściska się w maszynie wytrzymałościowej (prasie hydraulicznej). Norma PN-EN 13791 podaje wprost, że wytrzymałość na ściskanie uzyskana na próbkach o średnicy i wysokości 100 mm, odpowiada wytrzymałości "normowej" uzyskanej na próbkach sześciennych tzw. "kostkach" o boku 15 cm. Badanie próbek o średnicy i wysokości 100 mm uznaje się za najbardziej wiarygodną metodę oceny wytrzymałości betonu na ściskanie w konstrukcjach istniejących. Badanie tak przygotowanych próbek może również służyć do weryfikacji wytrzymałości betonu uzyskanego na "kostkach". Istnieje możliwość badania próbek o innych średnicach i proporcjach, do określenia na ich podstawie klasy wytrzymałości betonu wymagane jest jednak zastosowanie potwierdzonych naukowo współczynników korelacyjnych. Przewierty / odwierty kontrolne mogą służyć również do oceny makroskopowej głębszych partii konstrukcji, określenia jej grubości i rodzaju uwarstwienia, jak również do wykrywania wad wewnętrznych w konstrukcji. Więcej na ten temat ... Powiązane akty prawne, normy, zalecenia: PN-EN 12504-1 Badania betonu w konstrukcjach Część 1: Odwierty rdzeniowe - Wycinanie, ocena i badanie wytrzymałości na ściskanie PN-EN 12390-3 Badania betonu Część 3: Wytrzymałość na ściskanie próbek do badania PN-EN 13791 Ocena wytrzymałości betonu na ściskanie w konstrukcjach i prefabrykowanych wyrobach betonowych PN-EN 206 Beton Część 1: Wymagania, właściwości, produkcja i zgodność Badanie jednorodności i wytrzymałości betonu na ściskanie metodą sklerometryczną Ocena jednorodności oraz wytrzymałości betonu na ściskanie metodą sklerometryczną młotkiem Schmidta typu N - do elementów cienkościennych Metoda sklerometryczna (sklerometr / młotek Schmidta / concrete rebound hammer) – ocena jednorodności i wytrzymałości betonu w warstwie przypowierzchniowej. Pomiar tą metodą wykonywany jest na ogół przy pomocy sklerometru (np. młotka Schmidta) i umożliwia określenie powierzchniowej twardości betonu. W trakcie pomiaru stalowy trzpień uderza w powierzchnię betonu z określoną siłą, a przyrząd rejestruje na skali wielkość jego odskoku wyrażoną tzw. liczą odbicia. Opis przeprowadzania badań metodą sklerometryczną można znaleźć w instrukcji nr 210 Instytutu Techniki Budowlanej z roku 1977 oraz w normach PN-74/B-06262 i PN-EN 12504-2. Metoda sklerometryczną umożliwia w krótkim czasie wykonanie dużej liczby pomiarów na powierzchni badanego elementu, dzięki czemu znakomicie nadaje się do oceny jednorodności przypowierzchniowej warstwy betonu (wykrywania odspojeń i obszarów osłabionego betonu). Zasięg oddziaływania metody sklerometrycznej, w zależności od energii uderzenia użytego młotka, sięga od 3 cm (typ N) do 10 cm (typ M) w głąb betonu, stąd ocena wytrzymałości betonu na ściskanie wyznaczona tą metodą dotyczy głównie przypowierzchniowej warstwy betonu. Zgodnie z normą PN-EN 13791 wykorzystanie metody sklerometrycznej do oceny wytrzymałości betonu na ściskanie, wymaga skorelowanie uzyskanych tą metodą wyników, z wynikami uzyskanymi na próbkach rdzeniowych wyciętych z badanej konstrukcji i ściśniętych w maszynie wytrzymałościowej. Bez skorelowania błąd pomiaru może dochodzić do ± 30 %. Do badania wykorzystuje się jeden z czterech typów sklerometrów: Typ N - normalny, o energii uderzenia 2,21 Nm, stosowany do badania betonu zwykłego w konstrukcjach monolitycznych i prefabrykowanych, minimalna grubość badanego elementu 12 cm, miarodajne wyniki pomiarów uzyskuje się gdy grubość badanego elementu nie przekracza: 20 cm – przy dostępie jednostronnym (np. strop) 40 cm – przy dostępie dwustronnym (np. belka, słup, ściana z otworami) 60 cm – przy dostępie z co najmniej 3 stron (np. belka, słup) Typ M - ciężki, masywny o energii uderzenia 29,5 Nm, stosowany w badaniach betonu nawierzchni dróg i lotnisk, konstrukcji mostowych, fundamentów i innych masywnych konstrukcji, minimalna grubość badanego elementu 20 cm, zalecany do badania elementów o grubości powyżej 60 cm - obecnie nie jest już produkowany Typ L - lekki , o energii uderzenia 0,74 Nm, przeznaczony do badań betonów lekkich i zapraw Typ P - wahadłowy, o energii uderzenia rdzenia 0,88 Nm, przeznaczony do badań betonów i materiałów o małej twardości i wytrzymałości (np. tynku, stwardniałych zapraw murarskich, gazobetonu itp.). Obecnie w sprzedaży dostępne są głównie sklerometry typu N (do badań betonów zwykłych i wysoko wytrzymałych - przyrządy w wersji analogowej i cyfrowej) oraz sklerometry typu lekkiego do badań betonów lekkich, zapraw oraz spoin w murach. Poniżej kilka przykładów... Pomiary sklerometryczne nie należy przeprowadzać bezpośrednio nad zbrojeniem o otulinie mniejszej niż 3 cm, nad ziarnami grubego kruszywa, w miejscach silnego zawilgocenia betonu, na górnych powierzchniach elementów usytuowanych poziomo podczas betonowania. Typ młotka powinien być właściwie dobrany do grubości i twardości elementu konstrukcyjnego. Badanie sklerometryczne powinno być poprzedzone rozpoznaniem układu zbrojenia, usunięciem skorodowanego betonu oraz przeszlifowaniem i odpyleniem powierzchni w miejscu badania. Na pojedynczym elemencie pomiary wykonuje się w minimum 12 miejscach, a w każdym miejscu dokonuje się minimum 6 odczytów. Do najczęstszych błędów popełnianych przy pomiarach metodą sklerometryczną należy zaliczyć: ocena wytrzymałości betonu na ściskanie bez wcześniejszego skorelowania na próbkach rdzeniowych (błąd do ± 30 %), stosowanie młotka typu N do badania konstrukcji masywnych (zalecany młotek ciężki typu M), pomiar bez wcześniejszego oczyszczenia powierzchni betonu. Ciekawostki: W Ameryce Północnej popularna jest również inna metoda określania wytrzymałości betonu na ściskanie na podstawie powierzchniowej twardości betonu – jest to tzw. WINDSOR PROBE (ASTM C803 Standard Test Method for Penetration Resistance of Hardened Concrete) – w tym oznaczeniu wstrzeliwuje się w badany element konstrukcyjny sondę (kotew) a wytrzymałość betonu na ściskanie ustala się na podstawie głębokości, na jaką wbiła się sonda. W Ameryce Północnej jedną z metod oceny jednorodności betonu w warstwie przypowierzchniowej, a w szczególności przy wykrywaniu obszarów odspojeń jest chain drag metod. W trakcie pomiarów tą metodą przeszkolony pracownik nasłuchuje różnic w dźwięku, jaki wydaje ciągnięty po betonie łańcuch lub grupa łańcuchów. Powiązane akty prawne, normy, zalecenia: PN-EN 13791 Ocena wytrzymałości betonu na ściskanie w konstrukcjach i prefabrykowanych wyrobach betonowych PN-EN 12504-2 Badania betonu w konstrukcjach - Część 2: Badania nieniszczące - Oznaczanie liczby odbicia PN-74/B-06262 Nieniszczące badania konstrukcji z betonu. Metoda sklerometryczna badania wytrzymałości betonu na ściskanie za pomocą młotka Schmidta typu N Instrukcja ITB nr 210 Metoda sklerometryczna do badań wytrzymałości betonu w konstrukcji, 1977 ASTM C805 Standard Test Method for Rebound Number of Hardened Concrete Badanie wytrzymałości betonu na ściskanie metodą pull-out Metoda pull-out – badanie pozwala na pomiar wytrzymałości betonu na ściskanie w warstwie przypowierzchniowej, co jest szczególnie istotne przy ocenie wytrzymałości betonu na ściskanie w warstwie przypowierzchniowej trwałości konstrukcji możliwości wykonania napraw konstrukcji jakości przygotowania podłoża betonowego przed wykonaniem naprawy jakości otuliny betonowej (jakości pielęgnacji, zagęszczenia) wczesnej wytrzymałości betonu, w celu przyspieszenia prac budowlanych (określenie możliwości rozszalowania lub sprężenia konstrukcji) odporności młodego betonu na uszkodzenia mrozowe. Istota badania betonu metodą pull-out polega na pomiarze siły niezbędnej do wyrwania z betonu osadzonej w nim stalowej kotwy. Kotew zabetonowuje się w konstrukcjach nowo wznoszonych, a konstrukcjach istniejących kotew rozpręża w specjalnie wyciętym otworze. W trakcie pomiaru kotew jest wyrywana z betonu za pomocą siłownika hydraulicznego, który zapiera się o powierzchnię betonu poprzez pierścień oporowy. Dzięki właściwemu doborowi proporcji elementów zestawu, między kotwą a podstawą pierścienia oporowego wytwarza się złożony stan naprężeń, który w efekcie prowadzi do zniszczenia betonu, charakteryzującego się ścisłą korelacją między rejestrowaną siłą wyrywającą kotew, a wytrzymałością betonu na ściskanie. Norma PN-EN 13791:2007 zaleca skorelowanie uzyskanych tą metodą wyników, z wynikami uzyskanymi na próbkach rdzeniowych wyciętych z badanej konstrukcji i ściśniętych w maszynie wytrzymałościowej. Metoda jest zaliczana do badań nieniszczących, po badaniu pozostaje stożkowy otwór o średnicy 5,5 cm i głębokości 2,5 cm. Badanie powinno być poprzedzone lokalizacją zbrojenia, usunięciem skorodowanego betonu i wyrównaniem powierzchni. Oś kotwy musi znajdować się minimum 100 mm od krawędzi i narożników elementu i 50 mm od wkładek zbrojeniowych. Na pojedynczym elemencie badania wykonuje się w minimum 5 miejscach pomiarowych. Metody nie stosuje się do betonów na kruszywach lekkich oraz do betonów o uziarnieniu kruszywa nie przekraczającym 38 mm. Przykładami zestawów pomiarowych wykorzystujących tą metodę jest zestaw „CAPO-Test” dla konstrukcji istniejących i zestaw „LOK-Test” dla konstrukcji nowo wznoszonych. Film instruktarzowy badania metodą pull-out (CAPO-Test): Powiązane akty prawne, normy, zalecenia: PN-EN 13791 Ocena wytrzymałości betonu na ściskanie w konstrukcjach i prefabrykowanych wyrobach betonowych PN-EN 12504-3 Badania betonu w konstrukcji. Część 3: Oznaczenie siły wyrywającej (pull-out force) Generalna Dyrekcja Dróg Publicznych: Zalecenia dotyczące oceny jakości betonu „in-situ” w nowo budowanych konstrukcjach obiektów mostowych. IBDiM, Wrocław, 1998 Generalna Dyrekcja Dróg Publicznych: Zalecenia dotyczące oceny jakości betonu „in-situ” w istniejących konstrukcjach mostowych. IBDiM, Wrocław, 1998 ASTM C900 Standard Test Method for Pullout Strength of Hardened Concrete Przyrządy – CAPO-Test i LOK-Test firmy Germann Instruments. Badanie wytrzymałości betonu metodą ultradźwiękową Badanie wytrzymałości betonu na ściskanie oraz wykrywanie wad wewnętrznych w betonie metodą ultradźwiękową Metoda ultradźwiękowa - ocena jednorodności i wytrzymałości betonu na ściskanie oraz wykrywanie wad wewnętrznych w betonie na podstawie prędkości rozchodzenia się fal ultradźwiękowych (> 20 kHz) w badanym elemencie. Przyrządy stosowane w tej metodzie zwane są betonoskopami. Pomiar wytrzymałości betonu na ściskanie wymaga wcześniejszego wykalibrowania betonoskopu na próbkach rdzeniowych wyciętych z badanej konstrukcji i ściśniętych w maszynie wytrzymałościowej. Pomiary na danym elemencie należy przeprowadzić, w co najmniej 20 miejscach. Pomiarów nie należy wykonywać w miejscach spękanych, rakowatych lub skorodowanych, w bezpośredniej bliskości prętów zbrojeniowych i w rejonach największej koncentracji naprężeń. Do istotnych niedogodności metody należy zaliczyć wymóg obustronnego dostępu do danego miejsca pomiarowego – osie głowic przyrządu powinny leżeć na jednej prostej przechodzącej przez to miejsce. Najnowsze przyrządy w tej grupie umożliwiają również pomiar metodą pośrednią z wykorzystaniem fali powierzchniowej. Metoda wrażliwa jest na różnice w zawilgoceniu powierzchni betonu, czy obecność prętów zbrojeniowych. Zastosowanie metody ultradźwiękowej do wykrywania wad wewnętrznych w betonie - opisano w dziale "Defekty w betonie". Powiązane akty prawne, normy, zalecenia: PN-EN 13791 Ocena wytrzymałości betonu na ściskanie w konstrukcjach i prefabrykowanych wyrobach betonowych PN-EN 12504-4 Badania betonu. Część 4: Metoda ultradźwiękowa PN-74/B-06261 Nieniszczące badania konstrukcji z betonu. Metoda ultradźwiękowa Instrukcja ITB nr 209 Metoda ultradźwiękowa do badań wytrzymałości betonu w konstrukcji. ITB, Warszawa 1997 ASTM C597-09 Standard Test Method for Pulse Velocity Through Concrete Przyrządy – np. Pundit Lab firmy Proceq, The Surfer - Ultrasonic Pulse Velocity Tester. Badanie przyczepności - pomiar wytrzymałości betonu i warstw wykończeniowych na odrywanie / rozciąganie Badanie przyczepności przez odrywanie metodą pull-off (test przyczepności, pomiar wytrzymałości na odrywanie/rozciąganie betonu oraz warstw wykończeniowych, próba pull-off) pozwala na ocenę: wytrzymałości na odrywanie powłok, wypraw, napraw, tynków, posadzek, hydroizolacji z pap zgrzewalnych itp. na podłożu takim jak beton i stal możliwości wykonania napraw powierzchniowych konstrukcji betonowych jakości przygotowania podłoża betonowego przed i po wykonaniu napraw powierzchniowych Pomiar wytrzymałości na odrywanie dokonuje się poprzez przyklejenie do badanej powierzchni stalowego/aluminiowego krążka (stempla, płytki) najczęściej o średnicy 50 mm, a po stwardnieniu kleju obwiercenie krążka koronką rdzeniową na głębokość minimum 1,5 cm poniżej badanej płaszczyzny styku łączonych materiałów. Dla zwiększenia dokładności pomiaru stosuje się krążki o większej średnicy np. 75 mm, a przy badaniach przyczepności grubszych warstw materiału, takich jak kilkucentymetrowe warstwy betonu natryskowego (torkretu), stosuje się obwiercanie krążków przy pomocy wiertnic mocowanych do konstrukcji. Nad przyklejonym krążkiem osadza się przyrząd pomiarowy (siłownik hydrauliczny), który po wypoziomowaniu łączy się z krążkiem, a pomiar polega na równomiernym przekazywaniu siły odrywającej z przyrządu na krążek. Dostępne są różne przyrządy pomiarowe - mocowane do badanej powierzchni poprzez trójnóg lub pierścień, z wyświetlaczem wskazówkowym lub elektronicznym, z opcją automatycznego przyrostu siły odrywającej. Przyrządy do pomiaru przyczepności metodą pull-off odznaczają się zróżnicowaną dokładnością, z błędem pomiaru od 1% do nawet 15%. Za w pełni poprawny wynik uznaje się pomiar, gdy zniszczenie (oderwanie krążka z badanym materiałem) nastąpi w badanym podłożu. Norma PN-EN 1542 podaje 8 rodzajów standardowych zniszczeń oraz wskazuje przypadki, kiedy wynik pomiaru należy odrzucić. Film instruktarzowy badania metodą pull-off (BOND-Test): Powiązane akty prawne, normy, zalecenia: PN-EN 1542 Wyroby i systemy do ochrony i napraw konstrukcji betonowych. Metody badań. Pomiar przyczepności przez odrywanie PN-EN 12636 Wyroby i systemy do ochrony i napraw konstrukcji betonowych - Metody badań - Oznaczanie przyczepności betonu do betonu PN-EN 1504 Wyroby i systemy do ochrony i napraw konstrukcji betonowych Katalog zabezpieczeń powierzchniowych drogowych obiektów inżynierskich, część I ‑ Wymagania. IBDiM, Żmigród, 2002 Generalna Dyrekcja Dróg Publicznych: Zalecenia dotyczące oceny jakości betonu „in-situ” w istniejących konstrukcjach mostowych. IBDiM, Wrocław, 1998 ASTM C1583 Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method) Poniżej kilka przykładowych zestawów pomiarowych do testów pull-off: Badanie wodoszczelności betonu i powłok Wodoszczelność (wodoprzepuszczalność) betonu jest to zdolność betonu do przeciwstawiania się przepływowi wody będącej pod ciśnieniem. Wodoszczelność betonu powiązana jest z jego porowatością, stopniem zagęszczenia, sposobem połączenia pustek kapilarnych, obecnością spękań i mikrospękań. Zgodnie z PN-EN 206 - mrozoodporność betonu i jego nasiąkliwość – tracą obecnie wagę właściwości normowych, natomiast norma ta utrzymała w mocy konieczność wykonywania badania wodoszczelności betonu. Badanie wodoszczelności konstrukcji nowo wznoszonych wykonuje się standardowo na próbkach betonu pobranych w trakcie betonowania. Badanie wodoszczelności betonu można również wykonać na próbkach wyciętych z istniejącej konstrukcji, ale unika się tego, gdyż do badania potrzebna jest relatywnie duża liczba próbek, których pobranie może w istotny sposób osłabić konstrukcję lub obniżyć jej wodoszczelność. Pomiar wodoszczelności w warunkach laboratoryjnych na próbkach pobranych w trakcie betonowania lub wyciętych z istniejącej konstrukcji Metoda 1 - Badanie przepuszczalność wody przez beton - wodoszczelność betonu wg. PN-88/B-06250 „Beton zwykły” (norma wycofana i zastąpiona przez PN-EN 206) określa się na podstawie badań minimum 6 próbek rdzeniowych o śr. 100 mm i długości 150 mm wyciętych z pojedynczego elementu. Badanie polega na zwiększaniu ciśnienia wody oddziałującego na powierzchnię próbki o 0,2 MPa co kolejne 24 godziny. Rozróżnia się 6 stopni wodoszczelności (W2, W4, W6, W8, W10, W12). Liczba po literze W oznacza dziesięciokrotną wartość ciśnienia wody w MPa działającego na próbki betonowe. Stopień wodoszczelności betonu uznaje się za osiągnięty, jeżeli pod wymaganym ciśnieniem wody w czterech na sześć badanych próbek nie stwierdza się oznak przesiąkania wody. Dla przykładu zbadanie betonu o stopniu wodoszczelności W8 trwa około tygodnia. Beton o stopniu wodoszczelności W8 w odniesieniu do obiektów mostowych uznaje się za wodoszczelny. Metoda 2 - Badanie głębokości penetracji wody pod ciśnieniem - wodoszczelność betonu wg. PN-EN 12390-8 „Badania betonu. Część 8: Głębokość penetracji wody pod ciśnieniem” określa się poprzez wywieranie na próbkę ciśnienia 0,5 MPa przez okres 72 godzin (3 doby), następnie próbkę się rozłupuje i jeżeli penetracja wody jest mniejsza niż 50 mm beton uznaje się za wodoszczelny. Minimalny wymiar boku lub średnicy próbki nie powinien być mniejszy niż 150 mm. Nieniszczący pomiar wodoszczelności betonu i powłok w warunkach polowych metodą GWT Umożliwia przeprowadzenie nieniszczącego badania wodoszczelności bezpośrednio na konstrukcji - zgodnie z Zaleceniami dotyczącymi oceny jakości betonu „in-situ” istniejących konstrukcjach mostowych - opracowanymi przez Instytut Badawczy Dróg i Mostów. Nieniszczący pomiar wodoszczelności betonu / powłok / fug metodą GWT - istota pomiaru Metoda GWT może być stosowana do oceny wodoszczelności powierzchniowej i prób szczelności: betonu, powłok wodoszczelnych, murów i ścian ceglanych, spoin, fug, uszczelnień styków, przerw i styków technologicznych, napraw powierzchniowych, iniekcji rys. W metodzie GWT wodoszczelność wyrażona jest w postaci „przepływu cieczy” [mm/sek], jeśli wartość ta nie będzie większa od wartości granicznej równej mm /sek, to można przyjąć, że beton charakteryzuje się wymaganym dla obiektów inżynierskich stopniem wodoszczelności W8 zgodnie z polską normą PN-88/B-06250. Metoda GWT może być stosowana na powierzchniach pionowych i poziomych (od góry) oraz na powierzchniach o lekkim zakrzywieniu (słupy) przy zastosowaniu grubszej uszczelki. Zasada pomiaru - w badaniach GWT szczelna komora ciśnieniowa mocowana jest do badanej powierzchni, a następnie wypełniana przegotowaną wodą, która poddawana jest wymuszonemu działaniu ciśnienia. Mierzony jest ubytek ilości wody, która wniknęła w podłoże przy zadanym ciśnieniu w ustalonym przedziale czasu - na ogół ciśnienie 1 Bar i czas pomiaru 10 minut. Pojedynczy pomiar, wraz z przygotowaniem miejsca pomiarowego (wstępne zwilżenie powierzchni) zajmuje około 30 minut. Pomiar wykonuje się w minimum 5 punktach na element. Powiązane akty prawne, normy, zalecenia: PN-EN 12390-8 Badania betonu. Część 8: Głębokość penetracji wody pod ciśnieniem PN-88/B-06250 Beton zwykły (norma wycofana i zastąpiona przez PN-EN 206) Generalna Dyrekcja Dróg Publicznych: Zalecenia dotyczące oceny jakości betonu „in-situ” w istniejących konstrukcjach mostowych. IBDiM, Wrocław, 1998 ISO/DIS 7031: Festbeton; Bestimmung der Eindringtiefe von Wasser unter Druck, 1963 Przyrządy – GWT-Test firmy Germann Instruments Badanie stali zbrojeniowej i konstrukcyjnej Odkuwka zbrojenia - pozwala pomierzyć średnicę prętów, grubość otuliny oraz ocenić klasę stali i wielkość ubytków korozyjnych na zbrojeniu Określenie gatunku stali – gatunek stali można określić pośrednio na podstawie laboratoryjnej analizy zawartości pierwiastków w próbce wyciętej z konstrukcji, a następnie porównanie pomierzonych zawartości pierwiastków z wymaganiami norm obowiązujących w okresie budowy badanej konstrukcji. Przy określaniu gatunku stali można się również posiłkować pomiarem jej twardości jedną z metod Vickersa, Rockwella lub Brinella. Pobrane z konstrukcji próbki mogą zostać poddane badaniom makro i mikroskopowym w celu określenia struktury stali oraz ilości i rodzaju wtrąceń. Badania wytrzymałościowe stali – wykonuje się na próbkach wyciętych z konstrukcji, a następnie zbadanych w maszynie wytrzymałościowej. Do badania wytrzymałościowego stali wymaga się minimum 3 próbek. Określenie klasy stali zbrojeniowej – klasę stali zbrojeniowej można określić na podstawie odkuwek i bezpośredniej ocenie sposobu użebrowania wbudowanych w konstrukcję prętów zbrojeniowych. Ocena wytrzymałości betonu na podstawie badań sklerometrycznych zawsze miała swoich zwolenników oraz przeciwników. Zwolennicy widzieli w niej możliwość łatwego określania wytrzymałości betonu w konstrukcji, przeciwnicy dostrzegali bardzo małą wiarygodność. Zastosowanie do wyników badań sklerometrycznych reguł rachunku prawdopodobieństwa i statystyki matematycznej powodowało, że oceny były praktycznie bezużyteczne. Stosowane sztuczne zabiegi, np. odrzucanie wyników obarczonych dużymi błędami czy skalowanie (wzorcowanie), tylko w niewielkim stopniu poprawiły reputację metody sklerometrycznej. Niżej przedstawiono przypadek oceny wytrzymałości betonu na podstawie badań sklerometrycznych bez stosowania zbędnych i budzących wątpliwości zależności. Badania nieniszczące W realizowanym obiekcie o konstrukcji żelbetowej przewidziano w projekcie zastosowanie prefabrykowanych słupów żelbetowych o klasie wytrzymałości betonu C40/50. Dla partii składającej się z 15 słupów wyniki badań próbek kontrolnych betonu wskazywały, że mogą być niespełnione wymagania projektowe. Dodatkowe badania i analizy nie doprowadziły do wyjaśnienia wątpliwości i dlatego zwrócono się do Instytutu Techniki Budowlanej (ITB) o ocenę wytrzymałości betonu w prefabrykowanych słupach. Na podstawie wyników badań kontrolnych próbek betonu wybrano słup o najgorszych (najniższych) wynikach wytrzymałości. Słup ten został zdemontowany z konstrukcji (fot. 1) i służył do pobrania (odwiercenia) próbek do laboratoryjnych badań niszczących betonu. Wzdłuż długości leżącego słupa wytypowano pięć miejsc dla wykonania (pobrania) odwiertów. Dla wytypowanych miejsc – po obu przeciwległych ścianach słupa – wykonano pomiary liczby odbicia młotkiem Schmidta typu N. Tab. 1. Średnia liczba odbicia dla słupów Miejsce badania Liczba odbicia Słup 1 50,4 Słup 2 47,7 Słup 3 48,7 Słup 4 51,3 Słup 5 49,3 Słup 6 46,0 Słup 7 44,5 Słup 8 53,6 Słup 9 50,6 Słup 10 50,1 Słup 11 42,7 Słup 12 44,5 Słup 13 46,7 Słup 14 43,0 Słup 15 (zdemontowany) 43,1 Odwierty wykonane były w kierunku prostopadłym do kierunku betonowania. Otrzymano pięć odwiertów o średnicy około 100 mm i długości około 500 mm. Dla pozostałych słupów wykonano pomiary liczby odbicia na wysokości około 1,5 m ± 0,2 m, na trzech powierzchniach słupa (pomijano powierzchnię zacieraną), wybierając gładkie miejsca. Otrzymane z pomiarów średnie wartości liczby odbicia dla poszczególnych słupów przedstawiono w tablicy 1. Badania na budowie wykonano jednego dnia, przy temperaturze powietrza około 3ºC. Wszystkie pomiary liczby odbicia wykonano tym samym młotkiem Schmidta typu N. Fot. 1. Słup zdemontowany dla pobrania próbek Badania niszczące Pobrane z elementu konstrukcyjnego odwierty do badań niszczących zostały dostarczone do ITB i przechowywane przez osiem dni w laboratorium w temperaturze około 18ºC. Następnie z każdego z odwiertów wykonanych zostało po dwie próbki o średnicy około 100 mm i wysokości około 100 mm. Próbki pochodziły ze środkowej części słupa. Skrajne części odwiertów (przy czołowych powierzchniach) zostały odrzucone ze względu na znajdujące się tam fragmenty prętów zbrojeniowych. Powierzchnie czołowe próbek zostały zeszlifowane. Badania niszczące próbek zostały wykonane w laboratorium na maszynie wytrzymałościowej przy zakresie siłomierza 1000 kN. Wyniki badań niszczących dziesięciu próbek przedstawiono w tablicy 2 (fci – wytrzymałość betonu). Ze względu na niesymetryczną postać zniszczenia odrzucono wyniki próbek o numerach 5, 8 i 10 (fot. 2). Dla pozostałych siedmiu próbek wyniki uznano za miarodajne i uwzględniono w zestawieniach statystycznych i analizach. Średnia wytrzymałość z badań niszczących próbek betonu wynosi 50,0 MPa, odchylenie standardowe – 6,5 MPa, minimalna zaś wartość – 41,1 MPa. Warto zwrócić uwagę na następujące fakty. Oceny wytrzymałości betonu na podstawie wyników badań niszczących przyjmują założenie, że na całej powierzchni przekroju poprzecznego rozkład naprężeń w badanej próbce jest równomierny. W rzeczywistości nawet niewielkie, niewidoczne zaburzenia i niedokładności powodują, że w próbce występują bardzo zróżnicowane naprężenia. W miejscach występowania dużych naprężeń powstają lokalne pęknięcia, uszkodzenia i zniszczenia dużo wcześniej niż zniszczenie przy równomiernych naprężeniach. Szczegółowe, specjalistyczne badania próbek betonowych oraz przede wszystkim próbek gruntu w badaniach trójosiowych wskazują, że niedostrzegalne okiem uchybienia mogą w zasadniczy sposób obniżać wyniki pomiarów. Wszelkie nierówne powierzchnie, nieosiowe ustawienia próbek w maszynie wytrzymałościowej, większe ziarna kruszywa itp. powodują lokalne zaburzenia, zróżnicowanie naprężeń, lokalne przekroczenie nośności, niesymetryczne postacie zniszczenia i zaniżenie wyników w stosunku do rzeczywistej wytrzymałości betonu. Otrzymaną w wyniku badań niszczących średnią wytrzymałość betonu 50,0 MPa należy traktować jako dolne oszacowanie rzeczywistej wytrzymałości. W tablicy 1 normy PN-EN 13791 Ocena wytrzymałości betonu na ściskanie w konstrukcjach i prefabrykowanych wyrobach betonowych podane jest, że dla klasy wytrzymałości betonu C40/50 minimalne fck,is,cube wynosi 43 MPa. W normie tej (pkt oraz stwierdza się, że wytrzymałość z badań na odwierconych próbkach o średnicy i wysokości 100 mm odpowiada wynikom na kostkach sześciennych o boku 150 mm (czyli fck,is,cube). Korzystając z zależności podanych w pkt normy PN-EN 13791, wartość charakterystyczna wytrzymałości betonu na ściskanie w konstrukcji wynosi: fck,is = min(fm(n),is – k ; fis,lowest + 4) W naszym przypadku mamy k = 6 (tablica 2 normy PN-EN 13791) i otrzymujemy: fck,is = min(50,0 – 6; 41,1+4) = min (44,0; 45,1) = 44,0 MPa Ponieważ fck,is = 44,0 MPa > fck,is,cube = 43 MPa, to spełniony jest warunek dla klasy wytrzymałości betonu C40/50 podany w normie PN-EN 13791. Fot. 2. Próbki po badaniach niszczących Oceny klasy wytrzymałości betonu W tablicy 1 przedstawiono średnią liczbę odbicia z badań młotkiem Schmidta dla poszczególnych słupów. Dla słupa, z którego zostały pobrane odwierty (słup 15 zdemontowany), średnia liczba odbicia wynosi 43,1. Na podstawie badań niszczących próbek z odwiertów dla tego słupa oceniono, że klasa wytrzymałości betonu wynosi co najmniej C40/50. Dla 12 słupów z tabeli 1 średnia wartość odbicia jest większa niż dla słupa zdemontowanego. Wynika z tego, że dla tych słupów klasa wytrzymałości betonu jest większa niż dla słupa zdemontowanego, a więc że wynosi nie mniej niż C40/50. Dla dwóch słupów średnia liczba odbicia wynosi mniej niż 43,1 (słup 15 zdemontowany). Dla słupa 11 średnia liczba odbicia wynosi 42,7 (różnica 0,4) oraz dla słupa 14 średnia liczba odbicia – 43,0 (różnica 0,1). Z równania krzywej regresji podanego w normie PN-EN 13791 (pkt można obliczyć, że dla różnicy w liczbie odbicia 0,1 i 0,4 wytrzymałość zmienia się odpowiednio o: 1,73 x 0,1 = 0,2 MPa oraz 1,73 x 0,4 = 0,7 MPa Mając na uwadze, że dla słupa 15 (zdemontowany) o liczbie odbicia 43,1 wytrzymałość wynosi 44,0 MPa, to dla słupa 11 o liczbie odbicia 42,7 można przyjąć wytrzymałość 44 – 0,7 = 43,3 MPa. Tak więc dla słupa 11 spełniony jest warunek normy PN-EN 13791 dla klasy wytrzymałości betonu C40/50 (fck,is = 43,3 > 43 = fck,is,cube). Dla słupa 15 z oszacowaną wytrzymałością betonu 44,0 – 0,2 = 43,8 MPa również spełniony jest warunek normy PN-EN 13791 dla klasy wytrzymałości betonu C40/50. Reasumując, z powyższych analiz wynika, że dla wszystkich 14 przedmiotowych słupów spełnione jest kryterium normy PN-EN 13791 dla klasy wytrzymałości betonu C40/50. Tab. 2. Wyniki badań niszczących próbek Lp. Oznaczenie próbek Wymiary próbki Siła F fci UWAGI waga Ø h A g mm mm mm2 kN MPa 1 1874,0 104,3 100,3 8546,2 485,0 56,8 – 2 1851,0 104,3 100,6 8534,7 405,0 47,5 – 3 1846,0 104,3 100,3 8544,5 466,0 54,5 – 4 1826,0 104,6 100,9 8595,4 353,0 41,1 – 5 1849,0 104,9 100,8 8636,5 365,0* 42,3* odrzucono 6 1842,0 104,4 100,8 8560,9 373,0 43,6 – 7 1875,0 104,3 99,5 8544,5 493,0 57,7 – 8 1861,0 104,6 100,8 8580,6 347,0* 40,4* odrzucono 9 1908,0 104,6 100,4 8595,4 420,0 48,9 – 10 1870,0 104,4 100,6 8560,9 280,0* 32,7* odrzucono Wytrzymałość średnia fcm [MPa] 50,0 Odchylenie standardowe [MPa] 6,5 * Odrzucono ze względu na nieprawidłowe zniszczenie próbki wg PN-EN 12390-3:2001. Warto zwrócić uwagę, że wszelkie badania sklerometryczne wytrzymałości betonu wykorzystują fakt dodatniej korelacji między wytrzymałością betonu i liczbą odbicia w badaniach betonu. Oznacza to, że dla betonu tego samego typu (skład, wilgotność, wiek itp.) wraz ze wzrostem wytrzymałości betonu rośnie liczba odbicia. Nie odnotowano nigdy przypadków, aby korelacja była ujemna, tzn. aby ze wzrostem wytrzymałości betonu malała liczba odbicia. Mała wiarygodność metod sklerometrycznych polega na ustaleniu właściwej krzywej regresji. Nie ma uniwersalnej zależności dla wszystkich betonów, lecz dla różnych typów betonu obowiązują różne zależności. W omawianym przypadku badanych prefabrykatów zamontowanych w konstrukcji nie ma żadnych podstaw, aby przyjmować zróżnicowanie typu betonu i potrzebę stosowania różnych krzywych regresji. Dlatego stwierdzenie, że wyższa średnia liczba odbicia w elemencie prefabrykowanym oznacza wyższą wytrzymałość betonu w tym elemencie, jest fundamentalną zasadą leżącą u podstaw wszelkich dalszych analiz, rozważań i ocen. Wszystkie pomiary liczby odbicia wykonywano jednym (tym samym) młotkiem Schmidta typu N. Wszystkie badania in situ wykonywano w tych samych warunkach obniżonej temperatury. W efekcie wpływ temperatury był identyczny dla wszystkich pomiarów i nie miał wpływu na relacje między wynikami z tych pomiarów. W konkluzji opinii ITB stwierdzono, że na podstawie przeprowadzonych badań i analizy, uwzględniając wymagania norm i odpowiednich przepisów oraz biorąc pod uwagę własne doświadczenia z podobnymi zagadnieniami, należy uznać, iż dla wszystkich badanych słupów spełnione są wymagania w zakresie klasy wytrzymałości betonu C40/50. mgr inż. Jerzy Kowalewski Instytut Techniki Budowlanej Zdjęcia wykonane przez autora w ramach prac realizowanych w ITB.

prasa do badania wytrzymałości betonu